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In their classic monograph on neutron transport theory, 
Case et  al.' introduced the function g(c,p) ,  

g ( c , p )  = [(l - Cp tanh-' p)' + (nCp/2) ' ] - '  , (1) 

and gave many of its properties. It i s  now well known' that 
this function is simply related to the normalization of the 
singular eigenfunctions introduced later by Case.' An 
analogous function is readily defined' in time-dependent 
monoenergetic neutron-transport problems in plane geom- 
etry with isotropic scattering; however it also contains a 
complex transform variable. Bowden and Williams4 have 
shown that in such time-dependent problems the discrete 
eigenfunctions are not always present in the normal-mode 
expansion of the Laplace transform of the solution; that is, 
there exists a curve, C, , in the s/c-plane (see Fig. 1) such 
that if s / c  lies inside the curve (s E Si)  discrete terms are 
present, whereas for s/c outside the curve (s  E &) there 
are no discrete terms.  The curve C, is given by4 

We want to point out in this note that the function 

where s / c  = a + i p  and fL*(p,s) a r e  the limiting values of 
the dispersion function 

n(z,s) = s - CZ tanh-' ( l / Z )  (4 1 

on its branch cut in the z-plane, is the inverse of the 
square of the distance in the s/c-plane from the point (a,O) 
to the point [ a ' ( p ) ,  P r ( p ) ]  which lies on the curve C,.  

The functions /S2*(p,s)/c 1' are easily found from Eq. (4) 
to be 
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while the parametric form of Eq. (2) \ -  is 

Ip'(p) 1 = n p / 2  , a ' ( p )  = ptanh- lp  , 0 d p  L 1 . (6 )  

Thus IO*(p,s)/c1' are the squares  of the distances in the 
s/c-plane from the point (a,P) to the points [a ' (p ) ,  T I P ' ( ~ )  I] 
which lie on the curve C,, in the lower and upper half- 
planes, respectively. When p = 0, s2+(p,s) and K ( p , s )  are 
complex conjugates so that Eq. (5) reduces to Eq. (3) and 
the stated result follows. 

e S 

J 

)ranch cut 
r L /  I * 

112 / 8  
of vo I 

I ' Q  

:4 - e 
1 

Fig. 1. Location of the curve Cs in the complex s/c-plane, 
s / c  = (Y + zp. Several values of the parameter p are given in pa- 
rentheses for C, in the upper half-plane. The function vo ( s )  i s  the 
solution of Q ( v 0 ,  s) = 0 for which Re(vo) > 0 when Re(s/c) > 1. 
Some values of YJS) are plotted in the complex s-plane in Fig. 1 
of Ref. 5 (Fig. 7.1 of Ref. 2). t 

Case et al. show, f o r  example, that g ( l / a , p )  I,,,,, occurs 
at p = 0 for a <na/8, whereas for a >n2/8  it occurs for p 
between 0 and 1. For a very large, they show that g,,,- 
4a2/n'. The present geometric interpretation is seen to be 
consistent with t h e  s e characteristics. The radius of 
curvature of the curve C, given by Eq. (2) is n2/8  at (a',pr) 
= (0,O) as indicated by the dashed circle  on Fig. 1. For  a' 
very large, pr - n / 2  s o  that the minimum squared distance 
from (a,O) to (a',@') approaches n2/4, 'in agreement with 
Eq. (3) and g,,, - 4a2/na. 
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